Agile Behaviour Design: A Design Approach for
Structuring Game Characters and Interactions

Swen E. Gaudl

Falmouth University, MetaMakers Institute swen.gaudl@gmail.com

Abstract. In this paper, a novel design methodology—AGILE BEHAVIOUR
DesiGN—is presented which accommodates the requirements for devel-
oping complex game agents suitable from industrial environments. An
essential part of the design approach is to supported independent work
of both designers and programmers by reducing bottleneck situations.
The approach then fosters the creation of more loose and fluid inter-
actions between design and implementation leaving more freedom for
creative expression.

Keywords: agent design, authoring tools, planning, iva

1 Introduction

In game development and similarly in other dynamic software projects, SCRUM is
the dominating approach [13, 9] for developing products in a managed way. The
SCRUM process model is based on the agile philosophy allowing alterations and
new features to be introduced late in the project, a situation commonly required
in game development. “sCRUM for games” [9] an approach specifically adjusted
for games discusses four phases which partition the development, i.e. concept,
pre-production, production, post-production. The phases have defined milestone
points that are generated at the start of the project. Even for non-industrial
game development or game Al design, process models are useful as they provide
a common framework for integrating different parties into a shared project that
converges on a common goal. However, “SCRUM for games” is described only on
a high abstraction level not aiding the design of specific game components such
as the game Al system.

In contrast to SCRUM, the BOD methodology [2] describes an iterative process
working in similar ways to agile processes that does not focus on converging
against a more stable or final product. The steps to arrive at the desired outcome
in BOD are not designed for developing larger Al systems as it was originally not
created with a focus on in-time development and the design of large collections of
behaviours, but as an approach to model natural intelligence or more specifically
action selection in a more accessible way. Thus, to leverage the accessibility and
ease of use of BOD while at the same time making the process more controllable,
design concepts from [9] are integrated into a new approach to enhance the
process while making it similar to the one already used in game development.

Traditional game development phases influence and impact the creative process
and freedom of designers and influence the system design. The more mature the
system or game becomes, the more restrictive are deviations from the initial
design. Thus, features need to be known early and should not emerge late in the
design. This affects character and interaction design massively as alterations to
them emerge during testing. Here, AGILE BEHAVIOUR DESIGN can support the
process and the development of behaviour-based agent Al.

2 Background & Related Work

The original approach to BOD is a top-down analysis of a desired behaviour
combined with a bottom-up generation of plans and the behaviour library!. The
top-down analysis starts with the definition of a high-level task the agent wants
to achieve, an undertaking for generating a single agent in a well-defined en-
vironment by an expert. Next the plans are build bottom-up by implementing
primitives and enriching the behaviour plan. Primitives are clustered into be-
haviours according to their usage of shared memory/state objects. New goals
and sub-trees are added until the agent is capable of performing the initially de-
fined task. An existing systems analysis, comparing three INTELLIGENT VIRTUAL
AGENT (IVA) approaches—B0D[2], ABL[10] & FATIMA [4] , found that the de-
composition and plan creation to be a challenging process [7]. Thus, supporting
this step is crucial for reducing the burden on novice or less technical users.
Similar observations were made during an under-graduate Al course taught at
the University of Bath, where student as part of their coursework created 1vAs
using BOD. Novices tended to generate either flat shallow plans or deep narrow
plans, restricting the resulting agents immensely. These observations also apply
to other approaches such as BEHAVIORTREE (BT) [3].

When using BOD, iterating over the plan and creating new behaviour primi-
tives does result in a tight coupling of programmer and designer as the complete
behaviour library and plan structure is in flux. This is undesirable as it locks
both parties into restrictive patterns of interaction.

Based on the BOD decomposition methodology [2], a minimal plan is created
that starts out as a boiled down version showing a proof of concept implementa-
tion [12]. In their application to UNREAL TOURNAMENT, Partington and Bryson
describe the initial agent task as to capture the enemy flag from the opponent
base [12]. After the decomposition, a list of action sequences exists and a plan
which contains limited functionality. The resulting agent is able to perform a
basic task such a moving in a direction but not sufficing the original goal.

From this initial prototype, the plan incrementally becomes more complex by
adding new elements. While increasing the complexity, the first decomposition
and primitives list get adjusted as new behaviour needs to be integrated. How-
ever, this process requires revisiting the underlying behaviour library, a process
which creates forces a tight communication of designer and programmer. The

! Behaviour plans are designed to be human readable/amendable. The behaviour li-
brary is compiled game engine or agent framework specific program code.

process also requires altering the intended high-level task, leading many times
to re-visiting the existing plan.

With increased agent sizes, the complexity of the underlying behaviour li-
brary and plan structure grows as well. So selecting the best system architectures
for an approach is important. If the system is based on finite-state machines, the
complexity would, in the average case, increase exponentially which would render
any system at a certain complexity unusable. With approaches such as BT and
POSH [6, 5], the complexity grows only in the worst case exponentially. Another
approach are planning systems such as GOAP [11], they require expert knowl-
edge of the plan to predict the outcome but reduce the interdependence of nodes
and the amount of manual checking transitions. POSH integrates a lightweight
planner allowing local design by modifying existing sub-trees and hierarchically
nesting them within its modular structure.

3 A Directed Model to Behaviour Design

To advance the BOD approach it is possible to consider parts of the SCRUM
process when designing an agent. Scrum is an agile software development pro-
cess integrating iterative development and testing while maintaining as much
as possible the time predictability from other development processes such as
the Waterfall model. It partitions the project into smaller Sprints each taking
a specified time and dealing with a defined set of features/tasks. At the end of
each Sprint, the entire system should be able to execute the features developed
during the Sprint, including those that have been newly integrated. Features
are collected on a feature board which presents them in ordered lists (product
backlog) of completed, in-progress and to be implemented elements. ”Scrum for
Games” [9] starts with an initial full specification of the system and continuous
stable versions of the product while incrementally adding features from a fea-
ture board. The important part is the feature board; it is created and laid out to
schedule the work and progress of all features. This contrasts traditional SCRUM
where work is scheduled into tasks that potentially are multiple or partial fea-
tures. The work on the product starts after all features for the final product and
production phases have been laid out. This process has similarities with BOD is
similar but as shown by [12], the starting point is a minimal plan and thus a
minimal set of action primitives.

Agile Behaviour Design

The first step is to decompose a given scenario into a full set of behaviour prim-
itives(i.e. actions and senses) and state variables. After that, the designer is
building a full behaviour plan for the agent that suffices the scenario specifica-
tion. This step is more time-consuming then the incremental build up using BOD
and cognitively more challenging. It should be done in as few sessions as possi-
ble building an entire behaviour plan bottom up using the previously specified
primitives. This part of the development is a pure design stage without the need
for programmer involvement.

Next, the initial design plan is evaluated together with a programmer. Based on
the feedback, the design is modified; primitives are added, adjusted and renamed.
Behaviour stubs are generated in a OOD fashion, all specified primitive are
stubbed and clustered into them according to memory /state usage. This stage is
a pure programmer task. New action primitives should contain a default return
state. At this point, the fallback action which should be called if other plan
elements fail is the only action which needs an implementation. This action
allows the plan to be executable and represents an idle state of the agent.

When designing a behaviour plan its sub-plans (sub-trees in BT) are triggered
upon meeting a condition. Thus, when the conditions are not fulfilled for a single
sense the trigger does not release the related sub-tree. Using this mechanism, it
is possible to deactivate parts of the plan similar to the bitmasks used by Isla
[8]. To achieve this, the designer can integrate senses that unlock sub-trees if
they are triggered, thus once implemented they can activate the sub-plan.

After obtaining a first feature-complete plan, the work on the underlying
behaviour primitives can be adjusted to work on individual features. Thus, the
feature board can be ordered by clustering actions and senses under specific
features. The alteration to the feature board can be done by grouping actions
and senses according to their position in the hierarchical tree. This supports the
identification of redundant or re-usable functionality by identifying similar usage
of actions and senses within competences.

On the feature board, the relating features should be ordered so that sub-
trees of the plan can be completed one at a time and thus unlocking them for
the agent. This clustering of features allows programmers to shift entire feature
blocks up and down on the feature board without impacting other sub-trees.

If the behaviour designer now decides to alter the plan, a large number of
actions and senses are already stubbed within the hollow behaviour set. This
given structure allows the designer to work independently on the design while
programmers can implement the stubs. Following this approach requires fewer
inclusions of new underlying primitives than following a simple incremental ap-
proach; it also distributes the work better between designer and programmer by
initially close coordination in the first phase and a looser coupling later on.

Ideally, the work is directed from bottom to top of plan following the idea of
the SUBSUMPTION design of [1]. This will enable higher level drives after lower
level ones have been implemented and tested. By approaching the design this
way it increases the complexity of the agent according to the designed priorities
without impacting the robustness or completeness of the behaviour plan.

Agile Process Steps

1 Decompose scenario behaviour into primitives, states and goals (Design)

2 Design full behaviour plan that would suffice intended scenario (Design)

3 adjust/alter plan and primitive list (Design+Programming)

4a Templating behaviour stubs (Programming)

4b Design behaviour plan to have feature locks (Design)

5 Modify feature board & sort according to sub-trees (Design+Programming)

6a Implement stubs and alter primitives according to features (Programming)
6b Test & Develop behaviour plan based on given primitives/features (Design)
7 Loop to 3) until feature board is empty

AGILE BEHAVIOUR DESIGN was used to develop agents for STARCRAFT [5]
and was utilised in the development of the Android game STEALTHIER POSH?
as a prove on concept. Maintaining a prioritised feature set which relates to the
sub-trees proved in those two case studies beneficial and bridges the process to
commercial games. The feature board allows for better tracking the development
progress and more independent work of designers and programmers. Addition-
ally, it removes the burden of numerous changes to the behaviour library early in
the project or restricting the designer from working purely on the plan without
being able to test it. Unimplemented actions returning the default state allow
for the parallel work on partial behaviours which decouples the programmer.

Using hierarchical planners such as POSH in combination with AGILE BE-
HAVIOUR DESIGN it is possible to work on smaller sections of an agent con-
centrating for example on interaction with other agents while the dependencies
between designer and programmer are reduced. Additionally integrating the de-
fault trigger states, sub-trees unlock based on the progress of their underlying
implementation. This cascaded unlocking of the tree and the resulting behaviour
allows for a better version control of the behaviour library because it is more
directed towards realising connected sub-trees. The combination of working on
sub-trees and the feature board based on scrum directs the agent implementation
to focus on connected pieces. The new approach should provide sufficient sup-
port for working on more complex systems or distributing work between different
people such as movement and narration design for a given agent.

4 Conclusion & Future Work

This paper presents a novel, project-oriented alteration to the existing BEHAVIOR
ORIENTED DESIGN (BOD) [2]. The focus of the new methodology is to provide
better separation of design and programming and to support the development
of artificial agents in teams of multi-disciplinary authors. The two case studies
and the feedback from the systems analysis [7] create the basis for the newly
introduced process steps of the methodology. This new process allows designers
and programmers to distribute their work better while still following keeping
the project progress in mind. AGILE BEHAVIOUR DESIGN reduces the depen-
dencies of the different user groups. To further aid the development and to focus
on multi-platform development a new arbitration architecture was proposed—
POSH-SHARP [5]—which extends Bryson’s original concept of POSH to support
the agile design approach better. As a next step, further evaluations of the new
methodology and approach are intended with novice and expert users as well
as a widened systematic analysis of development approaches to support cross-
disciplinary design.

2 The game is available on the Android app store or using the following link: https:
//play.google.com/store/apps/details?id=com.fairrats.POSH

References

1]
2]

3]

Brooks, R.: A robust layered control system for a mobile robot. Robotics
and Automation, IEEE Journal of 2(1), 14-23 (1986)

Bryson, J.J.: Intelligence by Design: Principles of Modularity and Coor-
dination for Engineering Complex Adaptive Agents. Ph.D. thesis, MIT,
Department of EECS, Cambridge, MA (June 2001), Tech Report 2001-003
Champandard, A.J., Dunstan, P.: The behavior tree starter kit. In: Rabin,
S. (ed.) Game AI Pro: Collected Wisdom of Game AI Professionals, pp.
72-92. Game Ai Pro, A. K. Peters, Ltd. (2013)

Dias, J., Mascarenhas, S., Paiva, A.: Fatima modular: Towards an agent
architecture with a generic appraisal framework. In: Emotion Modeling,
pp. 44-56. Springer (2014)

Gaudl, S.E.: Building Robust Real-Time Game AI: Simplifying & Automat-
ing Integral Process Steps in Multi-Platform Design. Ph.D. thesis, Depart-
ment of Computer Science, University of Bath (2016)

Gaudl, S.E., Davies, S., Bryson, J.J.: Behaviour oriented design for real-
time-strategy games — an approach on iterative development for starcraft ai.
In: Proceedings of the Foundations of Digital Games. pp. 198-205. Society
for the Advancement of Science of Digital Games (2013)

Grow, A., Gaudl, S.E., Gomes, P.F., Mateas, M., Wardrip-Fruin, N.: A
methodology for requirements analysis of ai architecture authoring tools.
In: Foundations of Digital Games 2014. Society for the Advancement of the
Science of Digital Games (2014)

Isla, D.: GDC 2005 proceeding: Handling complexity in the halo
2 AL http://www.gamasutra.com/view/feature/2250/gdc_2005_
proceeding_handling (2005), [Accessed 4th Apr 2017]

Keith, C.: Agile Game Development with Scrum. Addison-Wesley Signature
Series (Cohn), Pearson Education (2010),

Mateas, M., Stern, A.: A behavior language for story-based believable
agents. Intelligent Systems, IEEE 17(4), 39-47 (2002)

Orkin, J.: Agent architecture considerations for real-time planning in games.
In: Young, M.R., John, L. (eds.) Proceedings of the First Artificial Intelli-
gence and Interactive Digital Entertainment Conference. pp. 105-110. AAAI
Press, Menlo Park, CA (2005)

Partington, S.J., Bryson, J.J.: The Behavior Oriented Design of an Un-
real Tournament character. In: Panayiotopoulos, T., Gratch, J., Aylett, R.,
Ballin, D., Olivier, P., Rist, T. (eds.) The Fifth International Working Con-
ference on Intelligent Virtual Agents. pp. 466-477. Springer, Kos, Greece
(September 2005)

Rubin, K.: Essential Scrum: A Practical Guide to the Most Popular Ag-
ile Process. Addison-Wesley Signature Series (Cohn), Pearson Education
(2012),

